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Foreword

This report summarizes the research accomplishments performed under the NASA

langley Research Center Grant No. NAG 1-1173, entitled: "Frequency Domain Anal-

ysis of the Random Loading of Cracked P_nels," for the period October 1, 1990 to

September 30, 1993. The primary effort of this research project was focused on the

development of analytical methods for the accurate prediction of the effect of random

loading on a panel with a crack. Of particular concern was the influence of frequency

on the stress intensity factor behavior.
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INTRODUCTION

Many modern structures, such as those found in advancedaircraft, are lightweight

and consequentlydynamicresponseplays a very important role in their analysis. The

analysisof vibration responseis of considerableimportance in the designof structures

that may besubjected to dynamic disturbances.Under certain situations, vibrations

may causelargedisplacementsand severestressesin the structure. This may happen

whenthe frequencyof the exciting forcespansa natural frequencyof the structure and

resonanceensues. A related problem is that fluctuating stresses,even of moderate

intensity, may causematerial failure through fatigue and wear. Also, the transmission

of vibrations to connectedstructures may lead to undesirableconsequences:delicate

instruments may malfunction or human occupantsmay suffer discomfort.

With the increasingusebeingmadeof lightweight, high-strength materials, struc-

tures today axe more susceptiblethan ever before to critical vibrations. Modern

buildings and bridgesare lighter, more flexible, and are made of materials that pro-

vide much lower energydissipation; all of thesecontribute to more intensevibration

responses.Dynamic analysisof structures is therefore important for modern struc-
tures, and likely to becomeevenmoreso.

The presenceof flawsand cracksin a material or structure canhave catastrophic

consequences.To be able to analyzethesesituations is the main reasonfor concepts

of fracture mechanics. It is well known that, in addition to the material properties,

the fatigue life of a structural component is influenced by the amplitude, sequence

and frequencyof the applied stressesas well asenvironmental effects. In the design

of critical structures suchas those usedin automobilesand aircraft, for example, it

is essentialto considerthesefactors and to include fatigue in the analysis in order to

guaranteetheir safetyand reliability [22].



2 Introduction

The stress intensity factor, K, emerges as a very significant parameter that char-

acterizes the crack behavior. Even though the stress at the crack tip tends to infinity

for all cracks, K can be used to distinguish between the severity of the loading in

different crack situations.

We are interested in analyzing the dynamic response of panels that contain cracks.

We will use the finite element method but because this type of problem is inherently

computationally intensive we explore a number of ways of doing this more efficiently.

One method to find K is to use its definition as a limit toward the crack tip. A

very fine mesh must be used in order to model the severe geometry change and a

fine mesh must also be used remotely so as to model the dynamic characteristics of

the plate. This method of calculating K was used in Reference [15] as a baseline

method. This method is too computationally expensive to be used for the present

problems. Alternative methods of calculating K in an efficient manner are addressed;

three alternative methods are the focus of this research. Each of the three methods

uses classical plate theory in performing the analysis.

Outline of Report

We begin, in Section 1, by reviewing the finite element method and establishing its

baseline performance. The discrete Kirchhoff triangle (DKT) element is used and we

show its convergence behavior for some static and dynamic problems.

Section 2 introduces the virtual crack closure technique for static stress intensity

calculation. This method is based on a work-energy type of relation. It has the

significant advantage that the local singularity, as represented by K, can be obtained

from work done by the crack forces. For the opening mode, for example,

4/3E(3 + u)G MzA¢_

U:V ' c:
where G is the strain energy release rate, M_ is a moment exerted on the crack tip,

and A¢_ is the opening rotation of the nodes closest to the crack tip. The performance

of this method is checked against available handbook solutions.

The frequency domain view of crack dynamics is developed in Section 3. First,

by defining a frequency domain concept of work, we extend the virtual crack closure
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method to situations involving damping. It is shown that the crack response and

structural response are very similar in character--actually the crack response is dom-

inated by the structural response. This leads to a global response spectrum method

summarized by

k. q_(w)
: "'"  o(0)

where _(_) is the rotation obtained by a modal analysis, ato is its static value, and

K, is the static stress intensity obtained either by analysis or from a handbook. The

essence of this equation is that a 'crack analysis' need only be done for the static case.

Section 4 considers the time responses due to transient loading. There are two

methods investigated: time integrations, and frequency domain convolution repre-

sented by

where/5/(w) is the frequency response function. Each method further divides into

direct use of finite elements or indirectly using modal analysis. The inverse FFT is

taken of the frequency domain quantities in order to find them in the time domain.

The final section considers a very computationally intensive problem--random

dynamic loading of a panel with a crack. Based on the conclusions of Section 4 only

the modal based methods are applied here.

A common thread running through this research is the notion that the dynamics

of cracked panels divides into separate effects of global dynamic behavior of the panel

and local crack tip singularity. In other words, we see an almost static crack embedded

in a structure (sans singularity) which is behaving dynamically. This frees us to bring

to bear the most effective tools for each separate area.
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1. FINITE ELEMENT MODELING

This section reviews the formulation of the finite element modeling and performs some

baseline tests for judging its accuracy. The information gained here will be used to

decide on the model to be used in the later studies. Testing involved different mesh

sizes, boundary conditions, and loadings; whenever possible, the results from the

finite element analysis are compared to the available analytical results. The purpose

of this section is to also exercise the program PlaDyn [13] over the range of problems

to be considered later.

1.1 Discrete Kirchhoff Triangular Element

We consider only thin plate theory (Kirchhoff plates) and the element used to model

this behavior is the discrete Kirchhoff triangle element (DKT). Kirchhoff plate theory

is applied here in that the transverse shear deformation is assumed to be zero; versus

Mindlin plate theory, which assumes transverse shear deformation is allowed. There-

fore, Mindlin plate theory is especially suited to thick plates and sandwich plates [3].

This element has a node at each corner of the triangle with degrees of freedom

{w, Cx, ¢_} at each node. In local coordinates it has a total of 9 degrees of freedom.

In the derivation of the element, the deflection and rotations are assumed to have the

representations (similar to Mindlin plate theory)

6 6 6

i i i

(1.1)

where Ni = (2Li - 1)Li for i=l, 2, 3, N4 = 4LiL2, N5 = 4L_L3 and Ns = 4L3L1. The

parameters Li are areal coordinates and are shown in Figure 1.1. These parameters

can be expressed as

1

Li = -_(A ° + aiz + biy) i = 1,2,3 (1.2)

5
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where A_', ai, and bi are given as

A'_ = xjyl - xly.i (1.3)

a; = y_ - yt (1.4)

bi = xt - xj (1.5)

where (x,, y_) are the coordinates of the node i (i=1, 2, 3) [12]. In this, there are a total

of 18 unknowns. Hence, initially there are more degrees of freedom than will appear in

the final form of the element. The extra degrees of freedom are eliminated as follows.

The in-plane strains (e_, %, and 7_) are evaluated from the strain-displacement

relations of Mindlin plate theory; consequently, element strains and strain energy

depend on ¢_: and ¢_, but are independent of w. Next, with the shear strains 7zy =

7z_ = 0 in the Mindlin plate equations, we impose Kirchhoff constraints of Ow/Oy -

¢_=0 and Ow/Oz - ¢_=0 at certain points. These particular points are taken at

points midway along the sides, and are sufficient in number to eliminate the extra

degrees of freedom. This leads to the coupling of the rotations with the deflection.

This element was first introduced by Stricklin, Haisler, Tisdale, and Gunderson in

1968 [20]. The derivation of the element is based on requiring the transverse shear

deformation to be zero at the nodes and along the sides of the element and proceeds

as follows.

Consider a laminate of thickness dz located a distance z from the midsurface of

the plate as shown in Figure 1.2. The displacements of this laminate are represented

by

u= z[LI(2L1-1)_-_1 + L_(2L_- 1) _---__

+L3(2L_- l)_-_Uz34LiL Ou, 4L1L3__.U2 ]_-g2+ 4z_L3_u5+
Oz oz .!

(1.6)

Ovl Or2= _ ca(2z, - 1)-g2 + L_(2L_- 1)-_-2

- 1)-bTz4_'_-g2 + oz + Oz

(1.7)
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_Wl

W = 521(51 -[- 352 -_- 353)Wl -_- i21(c352 _ c253 ) (%/7 (1.8)

_"L _c3wl
+i_(b2L3 - _ 2/'_y + ... + ailL_La

where u, v, w are displacements in x, y, and z directions, respectively; L1, L2, La are

area coordinates; bi = yj - Yk; c/ = x_ - xj; and a is a generalized coefficient. The

additional six terms for w are obtained by cyclic permutation.

A nine degree of freedom element is obtained both by requiring the transverse

shear strains to be zero at the corners and along the sides of the element and by

assuming the slope normal to the element at the middle of the side is one half the

sum of the values at the corner nodes. These conditions yield

cgwi Ou_ cOwi Ov_

Ox - --_-z; by -- o')z' i = 1,2, 3 (1.9)

Ou4 113 (ba 2Oz - b_ + c_ -_c3w1+ 2

3

--_C3W2 + (_ _)OU2

_) 0Ul 3b3c3 01) 1--_-z + 4 0z

+ 4 vqzJ

(1.10)

(:9v4 1 [ _ 3. (9ul (_ b_) OVl (1.11)Oz - b_ + c?a - b3wx + _b3c3--_z + Oz

3 3. Ou2

,gzJ

The equations for Ous/Oz, Ovs/Oz, Ou6/Oz, Ou6/Oz are obtained by cyclic permu-

tation. Interelement compatibility is still satisfied after Eqns. 1.9 through 1.11 are

applied.

Neglecting the strain energy due to transverse shear, the strain energy expression

for the element is the same as that used in plane-stress problems;

E l/(e:+ 2 l_v 2 )U - 1 - v 2 2 e_ + 2ve=e_ + ----_--e=_ dAdz (1.12)

where E is Young's modulus, v is Poissons ratio, and the strains are e_ = Ou/Ox,

e_ = Ov/Oz, e_s, = Ou/Oy + 01)�Oz.

It is noted that w does not enter the strain energy expression but enters through

Eqns. 1.9 through 1.11. The element stiffness matrix is obtained by substituting the
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assumed displacement functions into the strain energy expression and integrating over

the volume of the element using the relation

f i i kL1L L3d`4- + 2)!]2,4 (1.13)

where n = i + j + k and `4 is the area of the element. The element stiffness matrix is

symmetric and positive definite [20].

This DKT element has been widely researched and it has been documented that

it is one of the more efficient elements for thin plate bending. Batoz, Bathe, and

Ho [2] performed extensive testing on three different elements including the hybrid

stress model (HSM), DKT element, and a selective reduced integration (SRI) element.

Comparisons between the different element types were made based on the results

from different mesh orientations and different boundary and loading conditions. The

authors concluded that the DKT and HSM elements are the most effective elements

available for bending analysis of thin plates. Of these two elements the DKT element

was deemed superior to the HSM element based on the comparison between the

experimental and theoretical results [2].

A significant advantage of triangular elements is that they can be conveniently

mapped to form irregular shapes. Our mesh generator uses them to form a basic

building block called a module. A module is a quadrilateral divided into four triangles

(elements) by its diagonals as shown in Figure 1.3. In this way, we effectively have an

arbitrary quadrilateral element with an additional node in the center. This element

is implemented in the finite element package PlaDyn which was used for the analyses.

This progra_rn is capable of performing static and dynamic analysis of folded flat

plates; and it can analyze situations involving applied transient load history, forced

frequency loading, stability analysis, and modal analysis [13].

1.2 Static Analysis

In performing the static analysis, two different boundary conditions for four differ-

ent mesh sizes were considered. The two types of boundary conditions are all edges

simply supported (S-S-S-S), and all edges clamped (C-C-C-C). Two loading condi-

tions were also considered: one was such that a point load was applied at the center
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of the plate, and the other was that of a uniformly distributed load. The meshes

were constructed by using the mesh generating program GenMesh that is part of the

PlaDyn package and a typical mesh is shown in Figure 1.4 . Four different module

sizes were constructed using 2, 1, 0.5 and 0.33 inch (50.8, 25.4, 12.7, and 8.382 mm)

square modules. The plate was 20 inches by 20 inches (508 ram), and the half-plate

used was composed of 200, 800, 3200, and 7200 elements for the respective module

sizes given. In constructing these meshes, symmetry about the y-axis of the panel

was imposed in order to reduce the size of the matrices. From a vibrational point of

view this means that half of the modes will be missing, however, it is deemed that the

number of remaining modes are sufficient to allow adequate testing of the program

and methods. In order to impose the symmetry condition, degrees of freedom were

specified to be u=¢u=O along the mid-plane line of symmetry.

Point Load

For the S-S-S-S case under point loading the solution for the deflection was derived

in Reference [21]. This particular solution for an applied point load was obtained

using Navier's solution method in double-series form. This double-series converges

very rapidly and the first few terms give the deflection with great accuracy.

For a square plate with a point load applied at the center, the final expression for

the deflection is given by
0.0116Pa 2

Wo = D (1.14)

where a is the plate width, P is the applied point load, and D is the flexural rigidity

of the plate given by

Eh 3

D - 12(1 - v 2) (1.15)

In the examples to be discussed, Young's modulus, E, is 10 msi (69 GPa), Poissons

ratio, v, is 0.3 (since this is the value of v that is used in Reference [21]), and plate

thickness, h, is 0.1 inch (2.54 mm). The results are shown in Figure 1.5. What is

encouraging is that even the relatively large module gives very good results.

In deriving the solution for the clamped case, the simply supported solution was

used and superposed on this were the deflections due to moments distributed along
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the edges. These moments were adjusted in such a manner as to satisfy the condition

of zero slope along the edges. For a square plate where the point load is applied at

the center, the series converges to

0.00560Pa 2

wo - O (1.16)

Figure 1.5 shows a comparison of the results. For a given mesh size, the deviation

in this case is greater than for the simply supported case. However, as the module

size gets smaller, there is a very nice convergence. Thus, even a module size of 0.5

(A/a=0.05) gives results better than 0.5%.

Distributed Load

In implementing the distributed load for the DKT element, by necessity, different

shape functions must be used for calculating the equivalent load vector than is used

for calculating the stiffness matrix. Through using areal coordinates for the triangle,

we have

{P} (1.17)

PlaDyn forms this equivalent load vector on an element by element basis [13].

For the S-S-S-S case under uniform loading, the solution was derived in Refer-

ence [21]. In particular for a square plate, the solution is derived in terms of a series

and converges rapidly to give the deflection at the center as

O.O0406qoa 4
Wo = D (1.18)

where qo is the magnitude of the uniformly distributed load. The results are shown

in Figure 1.6 and show excellent agreement especially for the smaller module size.

The second set of boundary conditions applied was all edges clamped. Again, the

deflection is derived in terms of a series. For a square plate the series converges to

O.O0126qoa 4

Wo = D (1.19)

The results are shown in Figure 1.6. Again, the finite element results show a very nice

convergence. An explanation for the slight difference may be sought in the nature of
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the clamped boundary condition. Most triangles along the boundary have six of the

nine degrees of freedom set to zero, further, twelve of the eighteen degrees of freedom

at a corner (formed by two elements) are set to zero. These conditions are probably

over constraining the finite element solution.

1.3 Vibration Analysis

In performing dynamic problems a choice must be made concerning the method of

assembling the mass matrix. Just as for the distributed load, we cannot give a mass

formulation that is consistent with the DKT element. However, we do have two

alternative formulations; the lumped and consistent mass formulations.

In the lumped mass formulation the total mass, given by pAh, of the element is

equally distributed, or lumped, at each node. No rotational inertias are assumed at

the nodes. The consistent mass matrix formulation is assembled by using displace-

ment functions that are based on areal coordinates and given by

[m] = / p[N]T[N]dV (1.20)

Once the stiffness and mass matrices are assembled, PlaDyn uses the subspace itera-

tion scheme to solve the eigenvalue problem. In this analysis a reduced eigensystem

is established by iteration on a set of Ritz vectors. The advantage in using subspace

iteration (over vector iteration, say) is that the convergence of the subspace and not

of individual iteration vectors is achieved. Consequently, it is less likely to miss any

eigenvectors during the search [11].

The resonant frequencies obtained using the consistent mass formulation were

compared with resonant frequencies obtained using the lumped mass formulation.

This comparison was made so as to determine if using a lumped mass matrix would

yields adequate results. This was of interest since using a lumped mass formulation

versus a consistent mass formulation gives a mass matrix that assembles much quicker,

uses less disk space and also makes the analysis proceed more rapidly

The first boundary condition examined is the S-S-S-S case. Reference [10] gives
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the following equation for the analytical frequency value:

_'"= T +

Finite Element Modeling

(1.21)

where a and b are the half-widths of the rectangular plate, m and n are the mode

numbers. The results are shown in Figures 1.7 through 1.10. In each case, there is

a very nice convergence to the exact solution as the module size decreases. For each

case, convergence is from below indicating that the stiffness is underestimated or the

mass is overestimated.

There is no closed form solution for the vibration of a clamped plate but the

results from Reference [6] can be represented for a square plate in the form

win, = _ (1.22)

The values of A depend upon the mode. For example, the lowest mode, where re=n= 1,

has a value for A of 36.0, giving a value for wn of 544.7 rads/s. Values for other modes

and the associated A values are given in the following table

m,n A !

1,1 36.0

1,2 73.4

1,3 131.6

2,3 164.4

4,1 210.4

2,3 219.3

The comparisons for the consistent mass formulation are shown in Figures 1.9 and

1.10. Again, there is nice convergence to the referenced results for most modes. But

there are two things to note. The larger module results show more deviation than

the simply supported results. Also, while convergence is achieved from below, some

of the converged results are overestimates. The reason for this is not clear.

The performance of the lumped mass matrix is shown in Figures 1.11 and 1.12,

for the fifteenth mode. These plots clearly show that the two mass models converge

to each other as the module size decreases. In light of these results, the indication

is that using the lumped mass formulation would yield results almost as accurate
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as the consistent mass formulation. What they also show us, however, is that (for

the simply supported case) when the mesh is marginal (i.e., large module size) the

consistent mass performs better. We have more confidence in the correctness of the

comparison values for this case and hence prefer to draw the conclusions based on it

only.

Generally, since the equivalent of about 20 modes will be considered in the later

sections, it can be concluded that the 0.5 inch (12.7 mm) module with the consistent

mass will be adequate for the frequency range of interest.

1.4 Forced Frequency Spectrum

The dynamic problems of interest can also be viewed in the frequency domain for

analysis. In doing this the structure is excited at frequencies that are not necessarily

the resonant frequencies and the frequency response of the system is calculated.

PlaDyn was used to perform the conventional finite element analysis for the forced

frequency analysis. When damping is present in a structure the equations of motion

can be written in matrix form as:

[K]{u} + [C]{/_} + [M]{fi} = {P} (1.23)

where [K] is the stiffness matrix, [C] is the damping matrix, [M] is the mass ma-

trix, {u} is the nodal displacement vector, and {P} is the applied load vector. The

frequency domain form of this becomes

[K] + iw[C]-w2[M]] {fi} = {P} or [k']{fi} = {P} (1.24)

where the 'hat' indicates frequency dependent terms. The damping matrix, [C], is

assumed to be proportional. This means that [C] can be written as:

[C] = a[M] +/_[K] (1.25)

where a and _ are constants. We will actually let/_ be 0 and compute the results for

two non-zero levels of damping.

Because of the damping, the dynamic stiffness [K] is complex, consequently the

response {u} is complex even if the input {P} is real only. Figures 1.13, 1.14, and 1.15
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show the results for values of a = 0, 20, 200, and fl=0 for all cases. A module size

of 0.5 inches (12.7 mm) was used. The range of frequencies span only one resonance.

As expected, increasing the damping decreases the response peak and spreads the

energy among the other frequency components.

1.5 Modal Analysis

When a system consists of many degrees of freedom, it would be beneficial to reduce

the coupled equations of motion to uncoupled algebraic equations. This can be done

by applying modal analysis. Modal analysis uses the concept of the modal matrix

through which the system can be described in terms of uncoupled equations [5].

As part of an eigenanalysis, we obtain the eigenvectors, one for each eigenvalue

or mode. We form the modal matrix by placing these side by side as columns in

an array. This modal matrix has some very useful transformation properties when

applied to the stiffness, mass, and damping matrices. That is,

[_]T[K][_] = rKJ, [¢]T[M][¢] = rMJ, [¢1T[c1[¢1 = rCJ (1.26)

where [KJ, rMJ,and [C'] are diagonal matrices. If we represent the displacements

as

{u} = (1.27)

and substitute this into the equations of motion, then after pre-multiplying by the

modal matrix allows the coupled equations to be written as uncoupled single degree

of freedom systems. The uncoupled system is:

rRj{ } + + rMJ = {_,}/{P} (1.28)

where {r/} is the vector of modal displacements. Since/_i = w_37/i, the above can be

written as

w_yi + 2(iwif]i + _i -

where (, the damping ratio, is defined as

{_}T{p}

#, (1.29)

Ci Ci a +/_w_ (1.30)
(i = 2_ 2wiMi - 2wi
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where wi is the modal frequency value. Since less damping is desirable in the higher

modes the values for a used were 0, 20, and 200, and/3 was 0 for all cases.

A standard approach in performing the modal analysis uses the modal displace-

ment method [5]. This method involves solving Eqn. (1.29) for {r/} thereby leading to

a solution to the general equation of motion for the displacement, {u}, and its time

derivatives. A second method could also be used to perform the modal superposition.

This is the modal acceleration method and involves performing a modal transforma-

tion on only the inertia and viscous terms of the equation of motion [12]. This modal

transformation yields the following equation

(u} = [K] -1 (p} -[_]r_j-l((_} + rcj{0}) (1.31)

where r(j is a diagonal matrix with ith diagonal coefficient 2(icoi. In this, the ma-

trix multiplication is carried out over only the lowest m eigenvectors and can be

approximated as

{u} ,_ [K]-'(P} - Z{_}i Oi + 0i (1.32)
i----1

where m is less than the number of equations of the system. In order to fully solve

for {u} using the modal acceleration method Eqn. (1.29) is solved for _ and _ for

i ranging from 1 up to m. This is similar to the solution using the modal displace-

ment method. Eqn. (1.32) is used for superposition to obtain {u} as a function of

time [3]. The real advantage in using the modal acceleration method versus the modal

displacement method is that in general fewer modes are required for equivalent accu-

racy. This means that fewer eigenvalues and vectors need be computed thus taking

less computational time. However, it does require solving a static problem for the

complete system. Generally, this is not a significant difficulty but it does mean that

the complete stiffness matrix [K] must be retained. ModDyn [11] is capable of solv-

ing it both ways, but in the following only the mode displacement method is used.

For very large systems, it is generally less expensive to include higher modes than to

retain the stiffness.

The modal displacement method is used by PlaDyn and to account for the effects

of the higher modes, the first 20 modes were taken and the center displacement of
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the panel was recorded. This number of modes was deemed to be sufficient based on

past comparisons.

Computing the forced frequency spectrums using a modal analysis is very efficient

since for each mode, we have simply

= {¢}m{P}
+ _ (1.33)

Figures 1.13, 1.14, and 1.15 show the comparisons with the direct evaluation of

the forced frequency response. The results are generally in good agreement even when

damping is present.

1.6 Discussion

The static and vibrational results establish the DKT element as accurate; they also

give us a set of guidelines to be used when selecting an appropriate mesh size. Gen-

erally, for the panel sizes and frequency range of interest here, a module size of about

0.5 inches (12.7 mm) (Aa/a=O.05) is deemed adequate.

For the modal analysis twenty modes were used to better simulate the panel

behavior. It can be seen from the figures that a good agreement exists between the

finite element and the modal results for the out-of-plane deflection of the center of

the panel. This comparison was performed to establish the relationship between the

modal and the FEM method. Depending upon the desired output, and frequency

range one method may be more adequate to use over the other. For example, if only

a very limited range of frequencies were to be analyzed the FEM method could be

used as the computational time would not be a crucial factor. On the other hand, if a

broad frequency range was of interest, or even more important, if more than one level

of damping was to be analyzed, the modal method would be appropriate. The reason

for this is that for the modal method the computationally intensive portion is the

subspace iteration. For a given model the subspace iteration need only be performed

once. If more than one level of damping was to be analyzed, for example, the actual

analysis portion takes only seconds. If more than one level of damping was to be

analyzed for the FEM method, for each level of damping a separate analysis would
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need to be performed. This would be computationally expensive and in systems with

a large number of degrees of freedom is not economically feasible.
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2. STATIC ANALYSIS OF CRACKED PANELS

Fracture mechanics deals with the conditions under which a body can fail owing to

the propagation of an existing crack of macroscopic size. In the analysis of a structure

containing a crack the key question to be posed is what load will produce failure for

a given crack size, or, for a given loading condition, what will be the allowable crack

size. One of the most important quantities for describing or characterizing a crack

is the stress intensity factor. This is not a stress concentration factor; the difference

being that the former pertains to a singularity in the stress field, whereas the latter

pertains to geometries that do not produce infinite stresses [8].

In this section we investigate the accuracy of the finite element modeling as regards

the analysis of cracks in a panel. Our objective is to help delimit the parameters of

the modeling; that is, establish probable accuracy limits for given meshes and crack

sizes.

2.1 Crack in an Infinite Sheet

Consider a through-the-thickness central crack in an infinite plate subjected to uni-

form remote bending moment, as shown in Figure 2.1; the stress intensity factor, K/,

can be defined according to the maximum tensile stress as

Kt = lim 2v/2_ra_(r, O, hr-o 3 ) (2.1)

For this plate bending problem, Kz can be expressed as [19]

6Mo
KI = Ko = aoV#_, ao =

h 2
(2.2)

where 114o is the applied uniform moment, a is half the crack length, and h is the plate

thickness. In this way, the stress intensity due to bending can be viewed analogous to

29
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the in-plane case: we consider the entire surface to be subjected to a remote tensile

loading ao. However, plates experience plane strain, hence we will use the analytical

stress intensity factor, Ko, as given by

Ko_ 6Mov/-_
h2 (2.3)

This equation was used by Rook and Cartwright in Reference [17] to establish a

relationship between Kt/Ko and the ratio of crack length to plate width, Aa/a.

2.2 Modified Crack Closure Method

The modified crack closure technique, also called the virtual crack closure technique

(VCCT), is based on a work-energy principle. Irwin's contention is that if a crack

extends by a small amount, Aa, the energy absorbed in the process is equal to the

work required to close the crack to its original length [7]. Stated in equation form

G= lira 1 ["_as 02Aa auu(Aa- r,O)_;(r,_r)dr (2.4)

where G is the energy-release rate, auu and r_ u are the stresses near the crack tip,

and 0 axe the relative sliding and opening displacements between points on the

crack faces, and Aa is the crack extension at the crack tip. In the above, the first

term on the right hand side is the energy release rate for a Mode I crack type and is

represented by Gt. The second term in the above is the energy release rate for a Mode

II crack type and is represented as Gtt. The approach for evaluating GI and Gtt is

based on nodal forces and displacements. In terms of finite element nodal forces and

displacements, the expression for Gt and Gtl can be approximated as [18]

1 -

Gt = a_--,01im-_aFu_(vb- vc) (2.5)

Gtt = lim 1 -
a_-_o 2-_aa F_(u_ - uc) (2.6)

where Aa is the distance from the crack tip to the next closest node going into the

crack. Figure 2.3 shows the position of the points b and c relative to the crack tip,
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point a. The attractiveness of this method is that the required parameters are few

in number and can be obtained from a single analysis. The latter is important for

dynamic analyses.

The above expressions for the energy release rate are based on in-plane displace-

ments. For the problem of out-of-plane bending of a panel the expression for Gl can

be written as

= -
2Aa (2.7)

where M_, is the moment about the crack axis on the crack tip, ¢_b, and ¢_c are the

x-rotations of the nodes closest to the crack tip going into the crack.

For the problem of out-of-plane bending being considered, the stress intensity

factor, K,, for the finite element static case was calculated using the following [23]:

,/3(3 + v)EG

K. : V (2.8)

The program PlaDyn was modified so that it could output these parameters directly.

2.3 Effect of Module Size

In order to establish an acceptable model for the cracked panel, calculation of K,

was performed for different module sizes and compared to the handbook values in

Reference [17]. The purpose of this comparison is to establish a module size that can

accurately model the crack tip and the surrounding nodes. Determining the largest

module size was of interest in that a larger module would decrease the amount of disk

space required for storage of the mass and stiffness matrices. But more importantly,

the computational cost in using a larger module size would decrease thus decreasing

actual run time during performing the required analysis.

The cracked panel used in this study is shown in Figure 2.2. The model of the panel

was 20 inches (508 mm) wide by 20 inches in length and 0.1 inch (2.54 mm) thick with

a center crack. The material properties of Youngs Modulus, E, shear modulus, G, and

density, p, of the panel were 10.0 msi (69 GPa), 4.0e6 msi (27 GPa), and 2.5E-4 Ib/in 3

(6.93 kg/m3), respectively. Poissons ratio was calculated by v = (E/2G) - 1 = 0.25.

The applied loading consisted of a distributed moment of 10 lb-inches (1.13 N-m).
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This distributed moment was applied along the two edges parallel to the crack length

which was along the z-axis of the panel. Mid-plane symmetry parallel to the y-axis

of the panel was used in order to reduce the amount of disk space required in storing

the stiffness matrix. This crack was 4.0 inches in length. The boundary conditions

imposed were that the node at the center of the plate on each free edge was restricted

in w deflection and ¢_ rotation.

Calculation of the finite element static stress intensity factor, K,, for four differ-

ent module sizes was performed. From Reference [17] the value of K, was given as

Kof(a/b). In this, a is half of the crack length and b is half of the panel width. In our

case we have a/b=0.2 giving f(a/b) of 1.0236 [17]. Using values of Mo=10 lb-inch,

a=2.0 inches (5.08 cm), h=0.1 inches (0.254 cm), and v=0.25, Ko was calculated to

be 15792 lb-inch (1784 N-m); giving a value of 16164 (1826 N-m) for Ko.

The K, value for module sizes of 2, 1, 0.5, and 0.33 inches (Aa/a=l.O, 0.5, 0.25,

and 0.165, respectively) were calculated and Figure 2.4 shows that convergence to the

handbook is being achieved. It should be noted however, that the values from the

handbook are claimed to be accurate to only about 2 percent.

2.4 Effect of Crack Size

We are interested in establishing the adequacy of the mesh for various crack sizes.

To this end, we will keep the module size and panel width constant, and change the

crack length. It is expected that as the crack size approaches the module size that

significant errors will result.

Meshes containing different crack lengths, a, for a constant panel width, b, were

constructed to give different a/b ratios. Figure 2.5 shows the comparison of the

computed Ko/Ko values and the values from the handbook for a module size of 0.5

inches. It can be seen from the figure that for small a/b ratios the results deteriorate

rapidly. This indicates that for small cracks a finer mesh must be used to model the

crack parameters adequately. For a finer mesh model, using modules of 0.33 inches,

Figure 2.6 shows the corresponding comparison. For most of the range, the results

are better, but again there is deterioration at the small crack sizes.
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The difference between the 0.5 and 0.33 inch module established that using a 0.5

inch module size would yield adequate results. Using the 0.33 inch module size would

give more accuracy, but the advantage of the slightly better results would be at the

expense of the amount of disk space required to store the stiffness and mass matrices.

The most important disadvantage would be in the computational run time. For the

static case the run time for the 0.5 inch module was approximately 10 minutes. For

the case of the 0.33 inch module size it was approximately 18 minutes, or almost 2

times that of the 0.5 inch module size. This computational time difference becomes

even more important when a dynamic analysis is performed and the system must be

solved at each frequency or time step. Therefore, a module size of 0.5 inches was

deemed to give adequate results with regard to the stress intensity factor.
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Figure 2.3: Finite element model in vicinity of crack tip.

1.04

1.02

i

0.98

0.98

0.94

0.92

0.9

0.88

0.86

0.84

' ' ' -- Expected K,/K_-I.0236 "_

ee FEM K,/Ko Values

a/b=0.2

_.
I i I I

.165.25 .5 I.
_a/a

1.25

Figure 2.4: Static K comparison versus module size Ao/o.



2.5 Discussion 37

1.2..

_" 1.15

1.1

3 1.05

,_
-_ 0.95

0.9

" 0.85
0

'ooH&dboolK_/'A'oV_a._' ' ' '
ss FEM K,/Ko Values
Module Si = . "

I I I I I I I I I

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Ratio of crack size to plate width: a/b

0.5

Figure 2.5: Effect of crack size: K,/Ko comparison with handbook values and 0.5
inch modules.

1.2

1.15

._
1.05

"'_ 1

0.95 -

0.9
al-, 0.85
s/
o
= 0.8

0

t I I I I I l I I

oo iI;_ l
Handbook Ko Values

ss FEM Ks Values

Module Size_

" _ . "

3/
I I I I 1 I I I I

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Ratio of crack size to plate width: a/b

0.5

Figure 2.6: Effect of crack size: Ko/K_ comparison with handbook values and 0.33
inch modules.



38 2. Static Analysis of Cracked Panels



3. FREQUENCY DOMAIN ANALYSIS OF CRACKED

PANELS

Some dynamic analyses are more easily performed in the frequency domain, in par-

ticular, the dynamic output for structures that exhibit resonant type behavior is

more easily interpreted. It will be shown that the stress intensity factor also exhibits

resonant type behavior similar to the structure as a whole.

The stress intensity factor, K, is required in order to perform analysis for fatigue

crack propagation. Since various crack geometries need to be considered, a K calibra-

tion would be required for each different geometry. This process is expensive in the

static case alone but in the frequency domain it is even more so since the calibration

must be done over a wide spectrum of frequencies

Two methods for calculating the frequency domain stress intensity factor, K(w),

will be investigated. The first is a variation of the Virtual Crack Closure Technique

(VCCT) but applied in the frequency domain to damped systems. The second method

combines a modal analysis with a static crack analysis to obtain the variation in

the frequency domain. For all of this analysis, one of the restrictions made on the

modeling is that the crack is 'open' during vibration. This means that the faces of the

crack do not touch during the vibration. This is at least consistent with the general

approach to cracks in flexure.

3.1 Forced Frequency Response Analysis

Forced frequency means that the structure is excited at frequencies that are not

necessarily the resonant frequencies. One of the primary differences between modal

and finite element methods is how the damping is input. The damping for the finite

element analysis is taken to be proportional so that we can relate the results to the

39
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modal analysis. When damping is present in a structure, the equations of motion can

be written in the frequency domain as

[[K] + iw[C]-w2[M]]{fi} = {P} (3.1)

The damping matrix, [C], is assumed to be proportional in the form

[C] = a[M] + fl[K] (3.2)

where a, and /_ are constants. In the forced frequency problem we can solve for

{fi} over many frequencies. These displacements, which are complex in general, can

then be used to obtain the moments and stresses, say, also as a function of frequency.

Figure 3.1 shows the displacement of the panel of Figure 2.2 as a function of frequency

for medium damping.

The out-of-plane displacement of the crack tip was normalized with respect to its

static value. The resonant frequencies are indicated by x marks on the figure. It can

be seen that the peaks of the displacement normal occur near the resonant frequency

indicating the resonant behavior of the panel. We are interested in characterizing

the behavior of the range of about 2000 rads/s, as seen this will include about five

resonances.

The finite element and modal analysis for Cx at the crack tip, was performed for

damping values of a of 0, 20, and 200 and a/_ value of 0 for all cases. The results are

shown in Figures 3.2, 3.3, and 3.4. From these figures there is good agreement between

the finite element and modal Cx results. Figure 3.3 shows the spectral behavior of ¢=

with medium damping. It exhibits the classical resonance behavior in that the real

component goes through a zero while the imaginary component goes through a peak.

A forced frequency modal analysis was also performed for the model in Figure 2.2.

The modal analysis package ModDyn was used for this purpose. The system can be

written as

2 {¢}T{p}
w,_r/m + 2(,_wm_,, + _,_ -

Mm (3.3)

where _', the damping ratio, is obtained as

2win (3.4)
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Figures 3.2 to 3.4 show the results. For the case in which there is no damping

present, the results for the two methods discussed show good agreement. When

damping is added to the system the comparisons remain in good agreement especially

for the lower damping value of a=20. For the higher level of damping value, a=200,

the system response exhibited characteristics of being overdamped. Figure 3.4 shows

that the agreement was quite good for this case also.

3.2 Virtual Crack Closure Technique

The purpose of this subsection is to modify the concept of the virtual crack closure

technique for use in the frequency domain when the response functions are complex.

We can consider all response variables transformed into the frequency domain. In

particular, we have for the stress

,,,,,,(x,y, t) y,,,,) (3.5)

We now take as our definition for the frequency domain stress intensity factor

k(w) -!im_5_(r, o,w) (3.6)

This, in fact could be used as a numerical scheme for K-extraction. It is expected

that the value of/_ will be linear (when plotted against v/'}) in the region dominated

by the singularity of the crack tip and therefore linear extrapolation to r = 0 can be

used [9, 15]. In order to use this method a very fine mesh around the crack tip must

be used; using a fine mesh makes the analysis computationally expensive, hence this

method will not be investigated here. We seek alternative methods.

Irwin's contention is that if a crack extended a small amount, Aa, then the energy

absorbed in the process is equal to the work required to close the tip of the extended

crack to its original length. This is essentially an equivalency between work done

and energy stored. In the frequency domal,, all of our quantities are complex and

frequency dependent, hence we introduce a complex work term defined as

dI?V = Pd_ (3.7)
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Applying this in a manner analogous to the static analysis we are lead to

,/3E(3 + v)G __ 214r::A¢=
K= v _+_)h ' 2Aa (3.S)

where JI;/= is the resultant moment on the crack tip, A¢_ is the difference in z-rotation

between the two nodes next to the crack tip on the inside of the crack, both of which

are obtained at each frequency.

Figures 3.5 to 3.7 show the normalized stress intensity factors obtained this way.

Not surprising, they show the same general characteristics as the response plots.

Again, PlaDyn was modified so that it could output, directly, the complex nodal

forces and displacements.

3.3 Global Response Spectrum Method (GRSM)

Reference [15] related a modal analysis method to a baseline extrapolation scheme as

giving accurate results for K calculation in the frequency domain. The modal method

is useful when a broad spectrum of frequencies is considered. One drawback it has is

that when only a limited number of frequencies are of interest. For the modal method

to be used, subspace iteration must be performed prior to the modal analysis. This

can be computationally expensive for large systems.

The modal analysis approach we discuss has as its fundamental tenet, the idea

that the global dynamics are separate from the local crack tip behavior. As shown

previously, irrespective of the presence of cracks, the responses can be written as

=

Since the stresses axe related to the nodal degrees of freedom, then we have

(3.9)

{5} = [E]{fi} = [E][(I)]{,)} (3.10)

where [E] is understood to be a matrix of elastic constants. If we now take the

definition of stress intensity factor as a limit on the av, j stress, that is,

k(w) = limS_v(z,y = 0,w) (3.11)
x--t0



3.4 Discussion 43

we see that we must have

/_(w) = 7[¢]{I)} (3.12)

where 7 is some constant. In other words,/_(w) must exhibit the same type of modal

behavior as all the other quantities.

We can obtain 7 from a static analysis (i.e., the special case When ca=O) and are

thus lead to

/_(w) = Ks ¢(w) g_
= (3.13)

where ¢(w) is a significant response function, ¢o is its static value, and K, is the static

stress intensity value. We can obtain K, from a handbook such as Reference [17] if

it is available. In our case, we have

K.=Kof(a/b), go- 6M°
h2 (3.14)

where 3/0 is the applied moment. Alternatively, we can obtain K, directly from a

static analysis as was done here.

The stress intensity spectrums are shown in Figures 3.5, 3.6, and 3.7 for damping

values of a = 0, 20, and 200, respectively. In general, they follow closely the results

from the virtual crack closure technique.

3.4 Discussion

In general, the results of the virtual crack closure technique and the global response

spectrum method were in good agreement. This conclusion is important. Since

both methods give equivalent results then we have a greater freedom in choosing a

method for a particular problem. For example, if only a limited range of frequencies

are to be analyzed, the virtual crack closure method could be used. On the other

hand, if a broad frequency spectrum is of interest (which would be the case if time

reconstructions are to be performed) the modal method would be appropriate. For the

modal method the computationally intensive portion is the eigenanalysis and this cost

can be distributed over the large number of frequencies. The cost of the actual modal

summation portion is insignificant. The direct forced frequency solution using finite

elements does not enjoy such a speed up, as each frequency calculation is independent.
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4. TRANSIENT RESPONSE OF CRACKED PANELS

If a structure is excited by a suddenly applied, short term, excitation the response is

said to be a transient or impact response. After the force has stopped the structure

will then eventually exhibit free vibrations. If damping is present the vibrations will

then decay over time.

In this section we are interested in determining the time history response of a

panel with a crack. The first method uses direct time integration of the system

of equations. This was performed using PlaDyn. The second method uses modal

summation. The modal analysis was performed using the modal analysis package

ModDyn. The third technique uses a spectral approach where frequency response

functions are first obtained and then transformed to the time domain by the inverse

fast Fourier transform (FFT).

4.1 Finite Element Transient Analysis

For the transient analysis of the panel, the equations of motion are written as

[K]{u} + [C]{/L} + [M]{fi} = (P} (4.1)

The applied force {P} is a function of time and is written as {P}(t) = {p}P(t), where

{p} is a vector representing the time independent distribution of forces. For the panel

as used in the previous section, say, {p} consists (mostly) of unit moments applied at

each top and bottom boundary node. P(t) is the input function of time and is shown

in Figure 4.1 and its amplitude spectrum is shown in Figure 4.2.

In performing the finite element transient analysis, eqn. 4.1 was time integrated

using Newmark implicit time integration. For the integration the time step was chosen

to be 50/_s with 400 time steps giving a time window of 0.02 seconds.

49
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The transient finite element results from PlaDyn for the rotation are shown in

Figures 4.3, 4.4, and 4.5, for damping values of 0, 20, and 200 for at, with _ being 0

for all cases. It is seen that the effect of damping is noticeable only at the long time.

The initial transient response settles into a vibration with what appears to be two

dominant modes.

The time domain transient K value, Kt, was calculated by using the virtual crack

closure technique already discussed in Section 2. We use the formulas

,/3E(3 + v)G M_A¢_

Kt = V -_ _ -v)-h ' G- 2,'%a
(4.2)

directly, using G and Ms at each time step. This method is very convenient for

transient analysis because it requires monitoring only a few parameters; namely, the

rotations of the nodes closest to the crack tip and the moments at the crack tip.

Figures 4.6, 4.7, and 4.8 show the time histories for the stress intensity factor. As

expected, they seem to follow the rotation responses very closely. It is worth pointing

out that PlaDyn obtains these results as a post-processing operation. That is, during

the transient analysis, only the nodal displacements are stored. Later, these are re-

read into the program to selectively give other quantities such as stresses or forces by

combining with the element stiffness relation.

We can consider these transient finite element results to be our baseline results

for comparison with the modal analysis and spectral analysis results.

4.2 Transient Modal Analysis

Rather than integrating the coupled equations of motion, the transient modal analysis

uses the modal matrix to first transform these into a set of uncoupled single degree

of freedom equations. This set of equations is represented as

(4.3)

where the quantities/_i, _',, __/_ are the modal stiffness, damping and mass modal

matrices, respectively, and rh are the modal coordinates. This equation is integrated

using Newmark implicit time integration to find r/(t), O(t), and _(t) for each mode.
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Again, as for the finite element analysis, the time integration step used was 50/Js with

400 time steps. The separate modes are then recombined to give the actual response

as

{u}(t) = [¢]{r/}(t ) (4.4)

where {u}(t) is the displacement vector corresponding to the original finite element

analysis. The advantage of this approach is that it allows the selection of the range

of modes that participate in the response--these are generally much lower than the

system size. Initially, 20 modes were used for the analysis. But, based on later results

the number of modes was increased to 30. Increasing the number of modes takes into

account more of the structure; thus making the results better.

A transient analysis using modes in the summation was performed. Figures 4.3, 4.4

and 4.5 show the comparison between the modal and finite element results for _. The

comparisons are seen to be good. This is to be expected since both methods employ

the same discretization of the system and the same integration scheme of Newmark

implicit time integration. Hence as long as the number of modes is adequate, the

correspondence should almost be exact.

The Kt calculation for the modal analysis was based on the same VCCT equation

as the finite element analysis. The one difficulty with this formulation is that the

moment on the crack tip is needed. Since the modal analysis calculates displacement

responses of the system only, a scheme had to be devised to obtain the force on the

crack tip associated with the displacements. We did this by using ModDyn to create

the post-processing file of displacements for use by PlaDyn. PlaDyn was then used

to perform the force history analysis based on these modal displacements.

Figures 4.6, 4.7, and 4.8 show the comparison with the finite element results.

Again, as expected the agreement is very close.

4.3 Spectral Analysis

When the response of a given panel due to different loading histories is required, a

transient analysis for each loading must be performed. For a system with a large

number of degrees of freedom this is computationally expensive. Spectral analysis
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is a scheme that can be used to avoid this by allowing convenient frequency domain

convolutions with the applied force. This is illustrated here.

In spectral analysis, a time history is given the representation [4]

u(xl,y,,t) = E fi"(x'Y'W")(w)e'W"' (4.5)

where u(t) is the time response, fi,, is the spectrum of amplitudes, and w,_ are the

frequencies. In the frequency domain, the response due to a load can be written as

=/:L,P (4.6)

where/;/_ is the transfer function. Once this is known then the simple product above

(called a convolution) with a different/5 is used to get the response to different load

histories.

The approach is applicable to any response quantity. In particular, the stress

intensity history can be obtained from

/f =/:/kP (4.7)

where we can identify Hk(w) as the spectrum in Figures 3.5, 3.6, and 3.7.

We will demonstrate this approach using transfer functions obtained by direct

finite element analysis for ¢_ and K, by modal analysis for ¢_, and by using the

global response spectr_ method to find K.

In order to perform the convolution, the force history must be transformed to the

frequency domain. This is done by using the fast Fourier transform (FFT). When

performing the FFT on the force history two variables, the number of FFT points,

N, and the time increment, At must be decided upon. One restriction on N is that

it must be a multiple of 2; that is 2, 4, 16, 32, and so on. These two variables

dictate the total time window and the frequency increment of the components in the

frequency domain. For example, using parameters that correspond to the PlaDyn

forced frequency results of 1024 points with a time increment of 245.4 #s, would give

a total time window of 0.251 seconds, and a corresponding frequency increment of

3.979 hertz or 25 rads/s. The transform of the force history used in the spectral

analysis is shown in Figure 4.2.
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It has been established in the earlier parts of this section that there is a correlation

between the trend exhibited by the rotation ¢, and the stress intensity factor. Thus,

an initial indication of how closely the stress intensity factor will match the baseline

finite element results is achieved by comparing the inverse FFT of the convolution

of the force transform and the frequency domain ¢, values. The results for this axe

shown in Figure 4.9, 4.10 for damping values of a=20, and 200, and/3=0, respectively.

Initially, the comparison between the finite element inverse FFT rotation values

and the baseline finite element rotation values showed some disagreement. This dif-

ference was caused by the limited frequency spectrum of the forced frequency finite

element results. Only 81 points were taken in the forced frequency finite element

analysis because of long computational time. Therefore, when/?/was convolved with

the transform of the force a very limited range of the force was used. This was cor-

rected by broadening the spectrum of the finite element forced frequency analysis.

When this frequency spectrum was convolved with the force transform more of the

force was used; therefore, giving more non-zero points when taking the inverse FFT

and giving better results when compared to the baseline FEM results as shown in

Figures 4.9 and 4.10.

The/_" values calculated using the broader frequency spectrum values were used

as the transfer function and the convolution with the transform of the force was

performed. The inverse FFT was taken and the comparison between the results and

the finite element baseline results axe shown in Figures 4.11, and 4.12 for damping

values of a = 20 and 200, respectively, and 0 for/3. The Kt values were normalized

by using

Ko,-,,_ = 6M°P(t)m_v/-_
h2 (4.S)

where P(t),,,_ is the peak value of the scaling history shown in Figure 4.1. As

expected, the agreement with the baseline finite element results is very close.

The forced frequency modal analysis can be performed at any number of frequency

intervals for many frequency steps. This was because once the eigenanalysis, which

is the computationally expensive portion of the modal analysis, is done, the modal

summation takes a relatively short time to execute. A frequency increment of 10
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rads/s was used for 1000 frequency steps. Using this number of frequency steps

takes the frequency spectrum out to the Nyquist of the force transform. Taking the

modal frequency spectrum out to the Nyquist enables the full force amplitude to be

used when the convolution is taken between the modal transfer functions and the

transform of the force. The comparison between these results and the baseline finite

element transient ¢, values are shown in Figure 4.13, and 4.14 for the two damping

values. The results were again normalized similarly to the finite element results. The

results seem to be very close. In fact they are about the same as obtained in the time

integration scheme.

The/( values found by using the GRSM method were used as the transfer function

and convolved with the transform of the force. Figures 4.15, and 4.16 show that the

comparison between the GRSM reconstruction values and the baseline finite element

results are again in good agreement.

4.4 Discussion

The choice of a particular method for transient analysis depends upon the type of

problem to be examined. If, for example, a limited time window is to be examined

then the finite element method with direct integration may be used since the number

of time steps would be small. On the other hand, if multiple loading histories are

to be used or responses over a very long time are required then the modal methods

are indicated since only one eigenanalysis would be required. This is mentioned since

in the modal analysis this is the part that is computationally intensive. The actual

summation portion takes a short amount of time and can be performed for a variety

of damping values and force histories.

The use of the spectral method gives an alternative to the two methods mentioned

above. In this, a single forced frequency analysis is performed and by convolving with

the transform of the applied load and performing an inverse fast Fourier transform,

the results in the time domain for different load histories can be found. This method

can be very useful if a single model is to be examined over a variety of input load

histories. The comparisons shown above illustrate that if an adequate number of



4.4 Discussion 55

transform points are taken, the spectral method will yield results comparable to

those that would be obtained by either method previously mentioned.

We thus have four alternative methods for calculating K(t), the stress intensity

factor in the time domain. The choice of using the particular method should be based

on problem parameters such as if multiple analysis for the same model, if multiple

levels of damping are to considered and the time window of interest.
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5. RANDOM LOADINGS

The effect of a random (or nondeterministic) loading of a panel is important because

many real loadings that occur on aircraft or automobiles are of this type, and it can

drastically affect the fatigue crack growth rate.

This type of loading usually has a high frequency content but a low stress level [14]

and this makes it computationally expensive to analyze using time integration meth-

ods. In this section we explore two methods of analysis.

5.1 Random Loads

Our random forces used in the analyses were generated by using a random number

generator. This utilized a multiplicative congruential random number generator with

period 232 to return successive pseudo-random numbers in the range from 0 to 1. We

require that there be an equal probability that the random number be negative as

positive, therefore, 0.5 was subtracted at each time step. Such a sequence of numbers

have a relatively broad and flat frequency spectrum. In our final step this random

number sequence is multiplied by a force envelope. The first random force history

and force envelope is shown in Figure 5.1.

The Fast Fourier Transform was used to transform the force from the time domain

to the frequency domain and the result is shown in Figure 5.2. For this transform,

a At of 100 /_s along with 4096 transform points were used. In order to perform the

convolution of/:/k and P, the frequencies of the two have to match. The frequency

corresponding to the above transform parameters can be found by

1

Af _ Atg (5.1)

This gives a Af of 2.4414 hertz or 15.34 rads/s. In performing force convolutions,

it is required that the magnitude of the force spectrum be close to zero before the

65
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Nyquist frequency is reached. It can be seen in Figure 5.2 that this is the case for

this particular force history.

The modal frequency response values and/t" values using the GRSM method are

used as the transfer functions and were convolved with the corresponding values of

the force transform in the same manner as in Section 4. Once this convolution was

formed, the inverse FFT was taken. The results from the inverse FFT were then

compared to the baseline values from the transient finite element analysis.

5.2 Random Load Modal Analysis

The transient modal and finite element analysis axe carried out in the same manner as

discussed in Section 4. Figures 5.3 and 5.4 show the comparison between the modal

and transient finite element results for the rotation response for a medium damping

value of a=20, and a heavy damping value of a=200, respectively. The agreement is

seen to be good between the two methods.

The corresponding comparisons for Kt between the transient finite element results

from PlaDyn and modal results for axe shown in Figures 5.5, and 5.6. These values of

Kt were normalized similarly to Section 4 in that the maximum value of the moment

history was multiplied by the static K value, and this was used as the normalizing

factor. Again, the comparison shows good agreement for both methods.

As in the previous section, once the force ceases, the response very quickly settles

into a damped single mode vibration.

The transient finite element analysis is computationally very expensive. Therefore,

since a broad frequency spectrum is needed in order to account for the force amplitude,

this method was not pursued further.

5.3 Random Load Spectral Analysis

In using the spectral method of convolving/5 with/;/k, the main obstacle is in deter-

mining a sufficient number of transform points. We showed in the previous section

that a modal analysis is a convenient way of generating transfer functions. The re-

sults are obtained very quickly and a large frequency spectrum can be achieved along
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with the desired increment of frequency. Being able to choose the frequency incre-

ment allows more freedom in choosing the number of transform points and the time

increment.

Since the spectral analysis can be used to perform convolution of any frequency

parameter, the frequency rotation response was used as//_, the transfer function, and

was convolved with the force transform. The inverse FFT was then taken. As has

been shown the rotation response gives a good indication of the trend of the stress

intensity factor. The results for the comparison between the inverse FFT response

and the baseline transient finite element results are shown in Figures 5.7 and 5.8. The

comparison shows good agreement.

The modal frequency /_ values found by the GRSM method were used as the

transfer function and were convolved with the transform of the force. The inverse

FFT of the convolution was taken to get the time domain stress intensity factor

values. The comparison between the stress intensity factor and the baseline transient

finite element results are shown in Figures 5.9 and 5.10. As was expected based on

the results from the response plots, the agreement was found to be good.

5.4 Long Duration Random Loading

As a final example, we consider a random loading of long duration. The force history

used and its transform are shown in Figures 5.11 and 5.12, respectively.

Using this random force the transient modal analysis was performed. Since it

has been established that the transient modal results give virtually equivalent results

as the transient finite element, a comparison of the spectral modal results and the

transient modal results will be made.

The analysis is carried out as before using transient modal analysis and modal

convolution. Only one damping value was investigated for both of the methods used;

that being a value for a of 20, and fl of 0.

Using the responses obtained from the modal method and Kt values obtained by

using the GRSM method as the transfer function and convolving each with the force

transform, the spectral analysis is performed and compared to the modal transient
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results. Figure 5.13 shows the comparison for the rotation response. Figure 5.15

shows the _omparison of the transient Kt values. As was expected, the they axe in

good agreement.

A note should be made regarding the time increment chosen for the integration

and the transform. It was found that the time increment used for taking the force

transform had little effect on the results after the inverse FFT was taken and compared

to previous results. On the other hand, the time increment chosen to generate the

modal responses in order to do the post processing to gain the moment on the crack tip

had a significant effect on the results. The time increment of 100/_s in taking the force

transform was used. An initial value of 50_s was used in the modal transient analysis.

Upon comparing the ¢_ and Kt values, it was seen that the agreement was not very

good. Therefore, a finer time step was used for the modal transient integration and

the comparison for these results are shown in Figures 5.14 and 5.16 on a reduced

time scale for ease of comparison for the rotation and Kt results, respectively. These

results show good agreement between the two methods.

5.5 Dynamic and Quasistatic Kt Comparison

The dynamic problem studied above will be put into perspective by considering the

quasistatic problem. By quasistatic, we mean that for each discretized random load

point the corresponding Kt value would be calculated by

gt = go = 6M°P(t)v/-_h2 (5.2)

where Mo is the constant applied moment, and P(t) is its scaling history time. For

the random force the K, values were calculated and normalized with respect to the

K value found by using the maximum moment of 500 in the above equation for P(t).

These results were then compared to the Kt values calculated for the modal transient

analysis in the previous section. The comparison is shown in Figure 5.17. As can

be expected the quasistatic Kt values follow the same pattern as exhibited by the

random input. It can be seen that the values from the dynamic response and the

quasistatic analysis are drastically different--as much as 400% on average. One of

the reasons for the large difference is that for the dynamic analysis multiple resonances



5.6 Discussion 69

are taken into account. This point can be illustrated by generating a histogram of the

Kt values for these methods and comparing the results. Figure 5.17 was divided into

increments along the y-axis of 0.5. At each time step, the magnitude of the response

was checked to see in which increment it was contained. A summation of the number

of responses for each increment was done and the results are shown in Figure 5.18.

This figure indicates that if the quasistatic analysis method is used, only the lower

amplitudes are taken into account; this is indicated by the high count number at

the lower two increments. When the problem is analyzed using the modal transient

method (or the GRSM convolution since they are comparable) the response will span

more resonances and generate a greater spectrum of amplitudes. This is indicated in

Figure 5.18 by noting that the count is significant for the higher increments indicating

that the response is higher.

We now discuss how this history may influence damage growth. In the 1960's,

Paris developed what is now known as the Paris equation [8] which is a curve fitting

technique and is given by
da

_-_ = C(AK)" (5.3)

where C and m are material constants and AK is the stress intensity range. The

material constants, C and m may be found in reference books such as References

[16] and [1]. Values for m range from 3 to 4 typically [8]. Both the quasistatic and

dynamic histograms have the same total number of counts, they differ only in their

amplitude spread. Because of the non-linearity in the damage model (the exponent

m in the Paris law), we see that the few large amplitudes have a disproportionate

effect on the damage.

Using this value of m in the above example would give a value of approximately

47 times the quasistatic value (33"5) or 70,500. This illustrates the importance of

considering the dynamics of the problem.

5.6 Discussion

The problem of random loading on a structure can be very computationally intensive,

therefore, performing analysis using a conventional finite element program such as



70 5. Random Loadings

PlaDyn is usually not feasible. Modal analysis affords more flexibility in that the

computational cost is in the eigenanalysis and once this is performed the cost for

finding the time response is minimal for a givcn force history. The one drawback

of the transient modal analysis is that it only gives the system response. In order

to calculate the stress intensity factor, the moment on the crack tip is required. As

pointed out in Section 4, the modal responses of the nodes around the crack tip are

required and these responses dictate the moment exerted on the crack tip and are

used in conjunction with a finite element package such as PlaDyn.

The method most convenient for analyzing many different force histories is spectral

analysis. It was shown that using a spectral analysis along with a single modal

frequency analysis gives results comparable to the transient finite element results.

Therefore, many different random force histories can be analyzed using a combination

of a single modal frequency analysis and spectral analysis, both of which have very

low computational cost.

The combination of the spectral method and a forced frequency finite element

analysis was not examined here since the computational cost of calculating an ade-

quate number of transfer functions was prohibitive for the system under investigation.

Using modal analysis in the frequency domain to get the transfer functions in combi-

nation with the spectral method was deemed the most useful because of its flexibility

and relatively small computational cost. Another distinct advantage of the spectral

method over the modal is that it is much more straight forward to execute even for

a high frequency content, long duration loading. The drawback found in using the

transient modal method is that the time increment must be small. For the spectral

method the time window is dependent upon the number of transform points and the

time increment of the transform; thus giving more flexibility for investigating the

effects of a loading that may last a relatively long time.

The comparison between the quasistatic and the full dynamic response is impor-

tant because the generated larger amplitudes can have a more significant effect on

the damage.
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CONCLUSIONS

The random dynamic loading of a panel with a crack is a very challenging problem

both computationally and analytically. This report investigated some of the aspects

of its challenge and effected a solution.

The finite element method plays a central role in the solution and we showed that

the discrete Kirchhoff triangle element has very good properties for the solution of

thin plate problems. While not specifically investigated here, its triangular shape

allows generation of meshes to model arbitrary shaped regions such as holes, cutouts

or curved cracks.

The virtual crack closure technique is a powerful method for K extraction but

in its direct form for dynamic problems, it can be computationally expensive since

a complete dynamic problem is solved for each loading. Also, it becomes less cost

effective when long time responses are required as is the case for random loadings.

The combination of this method with GRSM analysis seems to be a very powerful

technique---the eigenanalysis is done once ( for a limited number of modes) and then

any type of loading can be applied. The frequency domain form of this also has sig-

nificant advantages. In fact, the GRSM aaalysis makes it very convenient to alternate

between a transient analysis and a forced frequency analysis.

Damping plays a significant role in the response of real structures-- without it

all structures would (theoretically) fail at resonance. We modeled multiple levels of

damping and showed how it affects the dynamic response. In order to use modal

analysis, however, it is necessary that the damping be proportional. From a prac-

tical standpoint, this is not a severe limitation since damping is usually not known

very accurately. Consequently, proportional damping can be made an acceptable

approximation.

81
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Conclusions

For a random loading, it was shown that it is vital to consider the dynamics of the

structure since multiple resonances may be spanned. Therefore, design should not

be based on the quasistatic results since they significantly underestimate the actual

response of the structure and hence the damage accumulation. This conclusion is

based on the results found in using Paris' equation for calculating crack growth. A

large difference between the quasistatic and the dynamic analysis was shown indicat-

ing that a dynamic analysis need be performed using one of the methods outlined

here. The particular method used to perform the analysis would depend upon the

problem specifications and requirements.

This research can now form the basis for the modeling of such difficult problems

as the effect of random loading on the fatigue growth in structures.
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